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Introduction: Late onset Alzheimer’s disease (AD) is the most common form of dementia, in which almost 70% of patients are women.
Hypothesis: We hypothesized that women show worse global FC metrics compared to men, and further hypothesized a sex-specific
positive correlation between FC metrics and cognitive scores in women.
Methods: We studied cognitively healthy individuals from the Alzheimer’s Disease Neuroimaging Initiative cohort, with resting-state
functional Magnetic Resonance Imaging. Metrics derived from graph theoretical analysis and functional connectomics were used
to assess the global/regional sex differences in terms of functional integration and segregation, considering the amyloid status and
the contributions of APOE E4. Linear mixed effect models with covariates (education, handedness, presence of apolipoprotein [APOE]
E4 and intra-subject effect) were utilized to evaluate sex differences. The associations of verbal learning and memory abilities with
topological network properties were assessed.
Result: Women had a significantly lower magnitude of the global and regional functional network metrics compared to men.
Exploratory association analysis showed that higher global clustering coefficient was associated with lower percent forgetting in
women and worse cognitive scores in men.
Conclusion: Women overall show lower magnitude on measures of resting state functional network topology and connectivity. This
factor can play a role in their different vulnerability to AD.

Significance statement
Two thirds of AD patients are women but the reasons for these sex difference are not well understood. When this late onset form
dementia arises is too late to understand the potential causes of this sex disparities. Studies on cognitively healthy elderly population
are a fundamental approach to explore in depth this different vulnerability to the most common form of dementia, currently affecting
6.2 million Americans aged 65 and older are, which means that >1 in 9 people (11.3%) 65 and older are affected by AD. Approaches
such as resting-state functional network topology and connectivity may play a key role in understanding and elucidate sex-dependent
differences relevant to late-onset dementia syndromes.
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Introduction
Late onset Alzheimer’s disease (AD) is the most common
form of dementia, in which age and sex, are the major
risk factors. Almost 70% of AD patients are women
(Alzheimer’s Association 2021), but the reasons for these
sex disparities are not clear. One potentially important
avenue of inquiry is better understanding baseline sex
differences in cognitively healthy aging, with respect to
brain function (Biswal et al. 2010; Ritchie et al. 2018;

Weis et al. 2020), cognition (Ceci et al. 2009; Miller and
Halpern 2014), and their interactions. This knowledge
would provide answers to whether sex differences
observed in AD are features of neurodegeneration, or
are consequences of sex-specific neurocognitive aging,
which in turn may inform studies of sex-specific risk for
AD-related cognitive decline.

The majority of functional magnetic resonance imag-
ing (fMRI) studies treat sex as a covariate of limited
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interest, and the role of sex in brain function has not been
intensively investigated.

The healthy brain is considered a complex dynamic
system composed of networks with multiple spatial and
time scales, modular structure, where a balance is nec-
essary between local segregation and global integration
(Geschwind, 1965; Tononi et al. 1994; Delbeuck et al.
2003; Cieri et al. 2021a; Yang et al. 2022). Considering AD a
disconnection syndrome (Contreras et al. 2019; Cieri et al.
2021b) to which women are more vulnerable, resting-
state functional network topology and connectivity is
an important approach to explore resting-state fMRI (rs-
fMRI) connectivity patterns. It is crucial applying these
studies from the cognitive healthy stage, in order to
understand whether potential differences between men
and women are present before the pathological condi-
tion.

A review on studies in children and young adults
showed more between-module connectivity in men,
and more within-module connectivity in women (Gur
and Gur 2017). Across the lifespan healthy women have
shown higher cortical functional connectivity (FC) in the
left hemisphere, whereas higher values were found in the
right hemisphere of men (Gong et al. 2009). One of the
largest studies in the field (Ritchie et al. 2018) has shown
that the strength of FC between sensorimotor, visual,
and rostral lateral prefrontal areas was higher in men
compared with women. On the other hand, the strength
of FC within the default network (DN) was higher in
women than men.

Recently, we have shown that cognitively healthy indi-
viduals, compared with individuals with mild cognitive
impairment (MCI) and AD, had the most substantial sex
differences in 5 global network metrics. The compari-
son between women and men have specifically shown
that cognitively healthy women had significantly lower
degree centrality, global efficiency, local efficiency, clus-
tering coefficient, and significantly higher path length,
compared with the latter (Cieri et al. 2021b). Moreover,
better FC metrics were associated with better verbal
learning scores, only in women. These findings suggest
that sex plays a role in brain functional network topology
and cognition in cognitively healthy older adults. How-
ever, that study did not explore the spatial specificity
of our findings or effects of additional variables such as
presence of APOE E4 allele and brain amyloid.

In the present research, we investigated sex differences
in global and regional functional topological network
properties and regional FC in a larger sample of fMRI
sessions from cognitively healthy individuals 80 years
old or younger. We used graph theoretical analysis and
functional connectomics to derive network metrics for
quantifying the connectivity strength, functional inte-
gration, and segregation. Then we employed LME models
with covariates (education, handedness, amyloid status,
APOE4 carrier status, and intra-subject effect) to eval-
uate sex differences. Based on our recent results (Cieri
et al. 2021b), we hypothesized that women would show

worse global FC metrics compared with men, and further
hypothesized a sex-specific positive correlation between
FC metrics and cognitive scores in women. Since these
subjects are cognitively healthy we did not expect an
association with APOE4 or amyloid positivity.

Methods
Participants
Data used in this study were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database.
The study was approved by each participating ADNI
site’s local Institutional Review Boards, as documented
on the ADNI website. All participants gave written,
informed consent. The sponsors for ADNI are listed in the
Funding section. All subjects enrolled in this study were
required to have 3.0-Tesla resting-state fMRI and T1-
weighted structural MRI data available, and diagnosed
as cognitively normal at the corresponding visit. Women
had significantly better 11-item Alzheimer’s Disease
Assessment Scale–Cognitive subscale (ADAS-Cog, 70-
point scale) scores than men (P = 0.001) and showed
a trend toward younger age (P = 0.11). As such, we
excluded participants with age > 80 years or ADAS-Cog
> 10 to achieve age- and cognition-matched woman
and man participants. Seventy-seven fMRI sessions
from 48 men (average 1.6 sessions per subject, age
72.2 ± 4.3 years, years of education 17.7 ± 2.2, and ADAS-
Cog 5.7 ± 2.3) and 130 fMRI sessions from 74 women
(average 1.8 sessions per subject, age 72.6 ± 4.5 years,
years of education 16.3 ± 2.3, and ADAS-Cog 5.5 ± 2.2)
were included in this study (Table 1).

Amyloid status
Considering that florbetapir amyloid positron emission
tomography (PET) scans could be a few years away from
the MRI scans and amyloid status could be altered in
this period, florbetapir PET data were required to be
collected within 1 year of MRI scan and the amyloid
status for each fMRI session instead of each participant
were determined. We extracted the composite standard
uptake value ratio (SUVR) to determine the amyloid sta-
tus by following the ADNI PET analysis pipeline. Follow-
ing ADNI florbetapir PET processing method, the fMRI
sessions with composite SUVR above 1.11 in florbetapir
PET scans were defined as amyloid positive. The sessions
with amyloid burden below the threshold were labeled
as amyloid negative. 115 fMRI sessions (43 from men and
72 from women) were determined to be amyloid negative,
and 69 fMRI sessions (25 from men and 44 from women)
were amyloid positive with the amyloid status of 23 fMRI
sessions (9 from men and 14 from women) unknown.

Clinical and cognitive measures
Clinical dementia staging and neuropsychological tests
were completed at each visit. Measures compiled in this
study included the ADAS-Cog, Clinical Dementia Rating-
sum of boxes (CDR-SB), Montreal Cognitive Assessment

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/3/3/tgac023/6618283 by guest on 04 July 2022



Zhengshi Yang et al. | 3

Table 1. Demographic characteristics of women and men with normal cognition.

fMRI sessions (n = 207) Men (n = 77) Women (n = 130) P value

Subjects 48 74
AGE 72.2 ± 4.3 72.6 ± 4.5 0.53
Handedness [R/L]a 43/5 63/11 0.48
Education 17.7 ± 2.2 16.3 ± 2.3 3.5E-05
APOE4 [+/−]a 12/36 27/47 0.18
Amyloid status [+/−]ab 25/43 44/72 0.87
CDRSB 0.1 ± 0.3 0.1 ± 0.2 0.95
ADAS-Cog [0–70] 5.7 ± 2.3 5.5 ± 2.2 0.63

Note: Age, ADAS-Cog, and Aβ status are summarized over fMRI sessions; handedness, education, APOE4 are summarized over subjects. Two-sample t-test was
carried out if not specified. aChi-square test statistic is used. bOnly some of the fMRI sessions have Amyloid PET scans within 1 year of fMRI sessions.

(MoCA), Trail Making Test-B (TMTB), and Rey Auditory
Verbal Learning Test (RAVLT) learning, immediate recall,
delayed recall, and percent forgetting.

MRI acquisition and analysis
The T1-weighted magnetization-prepared rapid acquisi-
tion gradient-echo MR images were collected with a 24-
cm field of view and a resolution of 256 × 256 × 170
to yield a 1 × 1 × 1.2-mm3 voxel size. The resting-
state fMRI data were acquired from echo-planar imag-
ing sequence with TR/TE = 3,000/30 ms, flip angle = 80◦,
48 slices, spatial resolution = 3.3 × 3.3 × 3.3 mm3, and
imaging matrix = 64 × 64.

fMRI preprocessing and denoising

The raw fMRI data were first processed with slice-timing
correction and rigid-body realignment of all fMRI vol-
umes to mean fMRI volumes using SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/). The first 5 volumes of fMRI data
were discarded to avoid data with unsaturated T1 signals.
The mean fMRI volumes were coregistered to the native
T1 structural image and the T1 image was spatially nor-
malized to MNI152 standard space. The transformation
information from coregistration and space normaliza-
tion steps were applied on each fMRI volume separately
to transform fMRI data to the template space. Instead
of using traditional nuisance regression techniques to
de-noise fMRI data, an artificial intelligence technique
was applied to remove the noise in each fMRI session
separately (Yang et al. 2020).

This pipeline was conducted without any demograph-
ic/diagnostic information about the subject, thus it does
not bias the post-processing analysis. Previous studies
(Yang et al. 2020; Cieri et al. 2021b) demonstrated the
improved statistical power of this technique over tradi-
tional de-noising strategies in identifying disrupted brain
topology in subjects with AD.

FC network

Ninety-four cortical and subcortical regions in the cere-
brum from the revised automated anatomical labelling
[AAL] atlas (Rolls et al. 2015) were used in our analysis.
The regional time series was defined as the mean time
series over all voxels in each region. We then calculated

Pearson’s correlation between regions followed by Fisher
r-to-z transformation to construct FC network.

Global brain and regional network analysis

Graph theoretical analyses were then applied on the
weighted FC maps to derive global and regional network
metrics with sparsity level varying from 0.05 to 0.5 with
increment of 0.01 (Wang et al. 2015). A detailed descrip-
tion of these network metrics is provided in Table 2.
Nodal strength, nodal efficiency and clustering coeffi-
cient were assessed to characterize the functional topo-
logical organization of each brain region. The mean val-
ues of these 3 network metrics over 94 regions represent
the global network topology of the whole brain. The
global and regional network metrics integrated over all
sparsity levels were the values used in the statistical
analysis. We rescaled each network metric separately to
similar range by converting the original values to their
corresponding z-scores across all participants, which has
no influence on the significance of the group difference
between women and men.

Statistical analysis
LME model was utilized to assess the sex difference
of global and regional network metrics, where the
within-subject variance was modeled as a random effect
grouped by individual subject and the confounding
variables such as age, education, handedness, and APOE
status (0: no E4 alleles and 1: 1 or 2 E4 copies) were
modeled as fixed effects together with sex (network
metrics ∼ sex + age + handedness + education + APOE
+ (1|subject)). The same statistical analysis used for
network metrics was performed with inter-regional
FC. From the LME model, we extracted the adjusted
network metrics and interregional connectivity after
correcting for the influence of confounding factors
and intra-subject effect. Then 2-sample t-statistic was
applied to evaluate the difference between women
and men. In order to summarize the regional net-
work properties in different brain areas, 94 regions of
interest were grouped into 6 anatomical macro-areas:
prefrontal lobe; other parts of frontal lobe; occipital
lobe; temporal lobe; parietal lobe; and central structures
(Supplementary Table 1).
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Table 2. Global and regional network metrics assessed in this study.

N is the nodes (brain regions) defined by the AAL atlas and n is the number of nodes. wij is the FC strength between node i and node j. Node i and
node j are neighbors if the connectivity wij surpasses the threshold. For each FC network at each sparsity level, the following global and nodal
metrics were calculated.

Network characteristics Nodal metrics Global metrics Equation

Strength
In the weighted, undirected network,
strength reflects how strongly a node is
connected with other nodes in the
network.

Nodal strength
Defined as the summation of weights from
edges connected to a node.

Connectivity strength
Average of nodal strength over all
nodes

Nodal strength:
ki = ∑

j∈Nwij

Connectivity strength:
k = ∑

i∈Nki

Integration
Measures the efficiency of the parallel
information transfer in the network.

Nodal efficiency
The average of the inverse shortest path
length between nodes. dij denotes the
shortest path length between node i and
node j.

Global efficiency
Average of nodal efficiency over all
nodes.

Nodal efficiency:

Ei = ∑
j∈N,j�=i

d−1
ij

n−1
Global efficiency:
E = 1

n
∑

i∈NEi

Segregation
Describes the likelihood that neighbors
of a node are connected to each other
and hence describes the tendency of the
nodes to form local clusters.

Nodal clustering coefficient
The proportion of a node’s neighbors that
are also the neighbors of each other.
ti denotes the geometric mean of triangles

around node i, ti = 1
2
∑

j,h∈N

(
wijwjhwhi

)1/3

Clustering coefficient
Average of nodal clustering
coefficient over all nodes.

Nodal clustering
coefficient:
Ci = 2ti

ki

(
ki−1

)

Clustering coefficient:
C = 1

n
∑

i∈NCi

For both global and regional network analysis, the
significance levels were reported after Bonferroni correc-
tion over multiple comparisons. As to inter-regional con-
nectivity analysis, the commonly used network-based
statistics (NBS; Zalesky et al. 2010) were then applied to
deal with multiple comparisons problem. The primary
significance threshold was set to 0.005 in NBS and the
clusters with family-wise error corrected P values <0.05
were reported in the result, by running a nonparametric
permutation analysis [10,000 permutations].

Correlation analysis

Exploratory correlation analysis tested the association of
global network metrics with clinical and cognitive mea-
sures by conducting linear regression analysis for women
and men separately. The t-test was used to compare the
significance level of slope difference between women
and men.

Assessment of APOE and amyloid effect

In order to assess whether APOE and amyloid status
contributed to differences observed in this study, 2-way
analysis of variance (ANOVA) was conducted to analyze
their main effect on global network metrics along with
their interaction effect with sex.

Results
Sex differences of global and regional network
metrics
With the global network metrics, men showed sig-
nificantly higher connectivity strength (mean ± SD:
men 9.861 ± 0.642, women 9.431 ± 0.487; P = 1.5E−7),
global efficiency (mean ± SD: men 0.244 ± 0.014, women
0.236 ± 0.010; P = 2.5E−6), and clustering coefficient

(mean ± SD: men 0.177 ± 0.015, women 0.170 ± 0.013;
P = 3.1E−4) than women (Fig. 1).

The analysis of regional network properties in women
compared with men showed significant sex differences
(Bonferroni-corrected P < 0.05) for nodal strength (23
regions), clustering efficient (14 regions), and nodal effi-
ciency (49 regions; see Fig. 2 and Supplementary Table 2).
Consistent with the global network metrics, the majority
of brain regions showed lower magnitude in women than
men across 3 regional network metrics. Temporal and
occipital lobes were prominently involved with lower
values in women than men for all 3 network metrics.
Parietal and frontal lobes (including prefrontal and
other frontal lobe regions) substantially contributed to
the lower nodal efficiency in women than men and
contributed to weaker nodal strength in women than
men. In contrast, clustering coefficients in women
differed little from men in frontal and parietal lobes.
Lower nodal clustering coefficients in women than men
were mainly located in temporal and occipital lobes. The
significance of the difference for each region is shown in
the Supplementary Table 2.

Higher regional network metrics in women were
observed only at the dorsal striatum, specifically right
caudate (P = 5.4E−5) and left putamen (P = 6.4E−3), where
women had significantly higher nodal strength, com-
pared with men. In addition, at the level of bilateral thala-
mus, women had significantly higher nodal strength (left
P = 1.90E−10, right P = 1.45E−10), nodal efficiency (left
P = 1.25E−5, right P = 1.35E−5), and clustering coefficient
(left P = 0.045, right P = 4.08E−3) compared with men.

Sex differences of inter-regional connectivity
In the inter-regional connectivity analysis, NBS detected
one cluster showing significantly lower FC in women
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Fig. 1. A comparison of global network metrics between women and men with normal cognition. The values presented in the figure were adjusted for
confounding factors using LME model.

Fig. 2. A comparison of regional network metrics between women and men with normal cognition, including nodal strength [Ns], nodal efficiency [Ne],
and nodal clustering coefficient [NCp]. The significance levels of sex difference, characterized with P value after Bonferroni correction over number of
brain regions. Only the regions having significant sex difference [Bonferroni-corrected P < 0.05] for at least one network metric are shown.

than men (NBS cluster-wise corrected P = 0.0012; Fig. 3),
with the connectivity mainly within the prefrontal area,
between prefrontal and temporal lobe, and between pre-
frontal, and other parts of frontal lobe. Fig. 3a demon-
strated the connections in the cluster, and Fig. 4b showed
the number of connections in the significant cluster
having lower FC in women than men. No cluster was
found to have higher FC in women than men.

APOE, amyloid status and their interaction
with sex
Two-way ANOVA revealed that APOE4 carriers and non-
E4 carriers did not show differences on global network
metrics (PAPOE > 0.7; Supplementary Fig. 1 top), and there
was no difference between amyloid positive and amyloid
negative participants (PAmy > 0.8; Supplementary Fig. 1
bottom). Neither APOE nor amyloid status had significant
interaction effects with sex (Pint > 0.2).

Exploratory analysis of clinical correlation
In the exploratory association analysis between global
network metrics and neuropsychological scores, only the
clustering coefficient showed significant associations
in the association analysis (uncorrected P < 0.05; see
Fig. 4). Men showed worse ADAS-Cog score associated
with higher clustering coefficient (r = 0.28, P = 0.015
uncorrected) but no significant association was observed
with women. The slope difference between women and
men was not significant. Higher clustering coefficient in
women correlated with lower RAVLT percent forgetting
(r = −0.23, P = 0.011 uncorrected) but men did not show
an association between RAVLT percent forgetting score
and clustering coefficient, a significant slope difference
between women and men was observed (P = 0.046
uncorrected). No other neuropsychological scores had
significant association with global network metrics.
The associations of regional clustering coefficients
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Fig. 3. Inter-regional FC analysis. (a) The cluster detected to have significantly lower FC in women than men [NBS cluster-wise corrected significance
level, P = 0.0012]. The marker colors represent the 6 brain macroareas which brain regions are assigned to and the line width of each connections
denotes the significance of the difference between women and men. Please refer to the Supplementary Table 1 for the abbreviations in the figure.
(b) The number of connections within/between macroareas showing lower FC in women in the cluster.

Fig. 4. Exploratory correlation analysis between global network metrics and neuropsychological scores. The scatter plots and the linear fitting lines
with 95% confidence interval were shown in the figure. Pearson’s correlation [r] and the significance of the correlation [P; uncorrected] were marked.
The association analysis was conducted with all participants, men only and women only separately. Only clustering coefficient was observed to be
associated with neuropsychological scores. Connectivity strength and global efficiency were not associated with neuropsychological scores.
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with ADAS-Cog or RAVLT percent forgetting score were
included in the Supplementary Fig. 2.

Discussion
This study showed that among cognitively healthy
elderly participants, women showed lower magnitude
global clustering coefficient, connectivity strength, and
global efficiency, compared with men. From a regional
perspective, men overall had higher regional network
values across all 3 metrics, especially at the temporal
and occipital lobes, which is in line with higher global
network values in men. Women had higher nodal
strength at right caudate and left putamen compared
with men. Also, at the level of bilateral thalamus,
women showed significantly higher values. Higher
global clustering coefficient was associated with lower
RAVLT percent forgetting in women; in contrast, higher
clustering coefficient related to worse ADAS-Cog scores
in men. Overall, these findings confirm sex effects in
brain function in healthy aging and suggest less efficient
functional communication in cognitively healthy women
compared with men. These observations suggest that the
FC changes contribute to women’s higher vulnerability to
AD. Moreover, this functional difference was independent
of effects of APOE genotype and amyloid, indicating a
potentially separate non-AD specific vulnerability.

Brain functional complexity seems to decrease with
physiological and especially cognitively pathological
aging (Cieri et al. 2021a), where AD in particular can be
seen as a disconnection syndrome based on network
deterioration (Contreras et al. 2019). Investigation of
brain FC and complexity, in terms of network integration
and segregation, can play a key role in the identification
of early biomarkers to predict the evolution of healthy
cognitive aging and/or pathology, which would be
important for early diagnosis and intervention (Griffa
et al. 2013; Griffa and Van Den Heuvel 2018).

In our study, women show lower global values in all the
3 metrics: clustering coefficient, connectivity strength,
and global efficiency. Clustering coefficient is a well-
known measure quantifying the small-worldness (van
den Heuvel and Sporns 2013) of a specific network. A
small-world network is a network with a large clustering
coefficient and a small shortest path length between 2
nodes on average (Watts and Strogatz 1998; Bullmore and
Sporns 2009; Masuda et al. 2018) and the loss of these fea-
tures are typical of cognitively pathological aging, such as
that seen in AD (Supekar et al. 2008; Brier et al. 2012) and
MCI, as well as healthy cognitive aging, compared with
younger participants (Grady et al. 2016).

Clustering coefficient is a direct measure of segrega-
tion, measuring the degree to which a network is orga-
nized into local specialized regions (Watts and Strogatz
1998; Bullmore and Sporns 2009; Griffa et al. 2013). Our
results confirm a globally less segregated brain in cogni-
tively healthy women compared with men.

Global connectivity strength is a measure of how
strongly a node is connected with other nodes, through
edges (van den Heuvel and Sporns 2011). Our findings
demonstrate a global lower magnitude in women com-
pared with men, similar to studies in AD subjects, where
AD patients exhibited decreased node strength, local
clustering coefficient, and local efficiency compared
with cognitively healthy controls (Hallett et al. 2020). This
result confirms our previous study, in which cognitively
healthy women have shown a topological pattern closer
to pathological cognitive aging (Cieri et al. 2021b).

Global efficiency is another measure of functional
integration, described as the inverse of the average
characteristic path length between all nodes in the
network (Latora and Marchiori 2001), measuring the
efficiency of distant information transfer within a
network. Again, less global efficiency is a typical result
not only in AD (Stam et al. 2007; Supekar et al. 2008), but
also in MCI (Wang et al. 2013) and in cognitively healthy
elderly individuals (Meunier et al. 2009; Sala-Llonch
et al. 2012). Achard and Bullmore (2007) have shown
that cognitively healthy elderly individuals have a less
efficient global network, whereas Meunier et al. (2009)
found a global reassessment of the modular organization
in the healthy elderly brain, compared with younger
brain. These results are consistent with our recent study
(Cieri et al. 2021b). Women seem to lose more modularity,
more small-word functionality, compared with men. The
modularity describes a fundamental rule of biological
systems, in which integration within subsystems allows
efficient local processing (Simon 2012; Stevens et al.
2012). Small-world networks balance (Cieri et al. 2021a)
between integration and segregation, with some densely
interconnected groups of nodes and some long-range
connections that allow fast information transferability
(Watts and Strogatz 1998).

At the regional level, clustering coefficients in women
were similar to those of men in frontal and parietal lobes.
On the other hand, temporal and occipital lobes were
prominently involved with lower values in women than
men for all 3 network metrics. Temporal and occipital
lobes are both part of the DN (Raichle et al. 2001), also
called “task negative network” that is active and syn-
chronized when the individual is not engaged in any
external cognitive demanding task in the scanner during
the resting-state (Fox and Raichle 2007; Christoff et al.
2016; Cieri and Esposito 2018, 2019; Cieri et al. 2020).
This network includes the posterior cingulate cortex/pre-
cuneus, medial prefrontal cortex, inferior parietal lob-
ules, lateral temporal cortices, and hippocampus (Raichle
et al. 2001; Buckner and Carroll 2007). DN is of fun-
damental importance for cognition because its activity
during rest has a key role for memory consolidation
(Fox and Raichle 2007). Structures and function of this
network are impaired in pathological aging (Cieri and
Esposito 2018; Esposito et al. 2018), therefore it becomes
essential to explore these features in cognitively healthy
aging, before neurodegeneration occurs. There are data
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that show an overlap between DN hubs and anatomical
patterns of amyloid deposits in AD, making this network
an area of interest in physiological and pathological aging
(Grady 2012; Cieri and Esposito 2018; Cieri et al. 2020).
It is important to stress that connectivity in the DN is
reduced not only in pathological neuroaging, but also in
elderly subjects when compared with younger partici-
pants (Grady 2012). In this sense women seem to show an
“older functional connectivity pattern” at least from the
perspective of graph theory metrics. Aging impacts the
segregation within networks and the integration of dif-
ferent networks (Geerligs et al. 2015), and women’s brain
functional organization from this perspective, shows a
“more aged functional neuro-configuration.”

Higher clustering coefficient is associated with better
cognitive performance (lower RAVLT percent forgetting)
only in women, but not in men, where conversely better
clustering coefficient is associated with worse cogni-
tive performance (ADAS-Cog). In other words when the
global clustering coefficient increases in women, cogni-
tive scores increase with it, whereas in men the opposite
is observed. Some studies have shown an increase of
clustering coefficient in pathological aging brains, such
as MCI and AD (Yao et al. 2010), but in our case the sam-
ple is composed by cognitively healthy subjects, where
higher global clustering coefficient is associated with
better cognitive performance. In our previous study (Cieri
et al. 2021b), we found a similar correlation only in cog-
nitively healthy women—not in men—between learning
score and another measure of integration (degree cen-
trality).

When we look at the regional level of FC, we found
higher regional network metrics in men across all our 3
metrics, consistent with our global values. Frontal and
parietal lobes especially contributed to the lower nodal
efficiency in women compared with men and conferred
to women weaker nodal strength. In contrast, clustering
coefficients in women differed little from men in frontal
and parietal lobes. Importantly, compared with men,
women have lower nodal clustering coefficient primarily
at the level of temporal and occipital lobes.

It is possible that the global FC degenerates earlier in
women and this can have a role in their higher vulner-
ability to neurodegeneration. This could be influential
especially when looking at the regional level contributing
to the global effect. Temporal and occipital lobes were
especially involved in global effects, with lower values in
women than men for all 3 metrics.

The only regions where women showed higher val-
ues are the caudate and left putamen and significantly
higher nodal strength, nodal efficiency, and clustering
coefficient at the level of bilateral thalamus, compared
with men. These results are consistent with observations
by (Tomasi and Volkow 2012), albeit they used local FC
density on young women and men with an age range of
18–30 years. Therefore it may represent a long standing
difference between men and women at the level of these
brain areas.

This study has limitations: The sample size is still
relatively small for global generalization and we lack lon-
gitudinal data to monitor the progression from cognitive,
structural, and FC perspectives. There are more women
than men in the present sample, underscoring need for
replication in samples with increased numbers of men.
We included amyloid positive subjects in our definition
of cognitively healthy subjects. Amyloid status was deter-
mined not to affect our current conclusions; there is a
need for replication in a large sample of subjects without
brain amyloid burden. The research has the strengths
of a relatively large sample for a study incorporating
fMRI in healthy elderly participants and use of global,
regional, and traditional FC metrics of resting-state brain
networks. The studies focus on cognitively healthy aging
allowing observation of sex differences as part of the
normal aging process, not as a part of neurodegeneration.

In conclusion, our study shows that functional brain-
based differences between men and women are present
in cognitively healthy aging, and these sex differences
may have implications for understanding sex differences
in pathological aging, including AD. Future studies that
integrate a longitudinal approach with analyses of
correlation/anticorrelation between different networks
and different strategies of adaptation between men and
women will help clarify the basis of these sex disparities.
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Supplementary material is available at Cerebral Cortex
Communications online.
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